Trong toán học, logarit nhị phân (log2 n) là lũy thừa mà số 2 cần phải được nâng lên để được số n, nghĩa là với mọi số thực x thì
x
=
log
2
n
⟺
2
x
=
n
.
{\displaystyle x=\log _{2}n\quad \Longleftrightarrow \quad 2^{x}=n.}
Ví dụ, logarit nhị phân của 1 là 0, logarit nhị phân của 2 là 1, logarit nhị phân của 4 là 2 và logarit nhị phân của 32 là 5.
Logarit nhị phân là logarit cơ số 2. Hàm logarit nhị phân là hàm ngược của hàm lũy thừa của 2. Cùng với log2, logarit nhị phân còn được ký hiệu là lg, ld, lb hoặc log.
Trong lịch sử, ứng dụng đầu tiên của logarit nhị phân nằm trong lý thuyết âm nhạc do Leonhard Euler tìm ra: logarit nhị phân của tỉ lệ tần số giữa hai tông nhạc cho biết số quãng tám nằm giữa hai tông đó. Logarit nhị phân có thể được dùng để tính độ dài của một số khi được biểu diễn trong hệ nhị phân, hoặc số bit cần để mã hóa một thông điệp nào đó trong lý thuyết thông tin. Trong khoa học máy tính, nó đếm số bước cần để thực thi thuật toán tìm kiếm nhị phân và các thuật toán có liên quan khác. Logarit nhị phân cũng có nhiều ứng dụng trong một số lĩnh vực như toán học tổ hợp, tin sinh học, nhiếp ảnh và trong thiết kế các giải đấu thể thao.
Logarit nhị phân là một trong các hàm toán học chuẩn của ngôn ngữ C và có trong một số bộ chương trình phần mềm toán học khác. Phần nguyên của logarit nhị phân có thể được tìm qua phép toán tìm bit 1 đầu tiên trên một giá trị nguyên hoặc tìm số mũ của một giá trị dấu phẩy động, trong khi phần thập phân có thể tính được một cách hiệu quả.
View More On Wikipedia.org